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In this paper, experimental results of unsteady #uid-force measurements are reported. Impor-
tant deviations of the measured #uid forces from their single-phase #ow counterparts were
uncovered. Most importantly, the resulting force coe$cients are not simple functions of the
reduced #ow velocity ;/fD, as is the case for single-phase #ow. Test results at 0)5 MPa
challenge the basic assumption of the existence of a time-invariant linear transfer function
between tube displacement and the resulting #uid forces. Time}frequency analysis using
Wigner}Ville transforms shows that the phase di!erence between tube displacement and the
#uid force (an indicator of stabilizing or destabilizing #uid e!ects) undergoes signi"cant
variation under what may be considered steady #ow conditions. This variation may explain the
previously reported phenomenon of intermittent #uidelastic instability in two-phase #ows.

( 2002 Academic Press
1. INTRODUCTION

THE EXISTENCE OF FLUIDELASTIC instability in two-phase #ow has been con"rmed experi-
mentally by a number of investigators. In essentially homogeneous two-phase #ow, e.g.,
bubbly #ow, it appears that the mechanisms underlying #uidelastic instability and the
instability phenomenon are the same as those observed in single-phase #ow. The more
general case of nonhomogeneous two-phase #ow, e.g., slug #ow, is less amenable to straight-
forward interpretation by direct comparison with single-phase #ow mechanisms.

For single-phase #ow it has been established that #uidelastic instability can be predicted
once unsteady #uid-force coe$cients have been measured [see for instance, Tanaka &
Takahara (1980) and Chen (1983)]. The force coe$cients were shown to be functions of
reduced #ow velocity ;/fD. For two-phase #ow this single parameter dependency no
0889}9746/02/020137#16 $35.00/0 ( 2002 Academic Press
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longer holds. The #ow pattern and void fraction among other factors, come into play. In
fact, for certain #ow conditions, the fundamental assumption of the existence of a time-
invariant transfer function between tube displacement and #uid forces becomes question-
able for two-phase #ow. In this paper, we delve into some of these important questions.

We present force coe$cient data at high temperature and pressure up to 5)6 MPa,
slightly lower than the value of 5)8 MPa at which damping and vibration tests were
conducted. Important design challenges, due to the extreme test conditions, are highlighted.
The data reduction procedure used to extract the force coe$cients is then presented. This
analysis we refer to as the averaged analysis. For nonhomogeneous #ow conditions,
time-dependent e!ects play an important role in the instability phenomenon. Intermittent
instability (Nakamura et al. 1995) is caused by nonstationary #ow conditions. Time}
frequency analysis is performed to gain insight into temporal e!ects on the force coe$cients.
The basic mathematical formulation of Wigner}Ville transforms is brie#y presented for
reference. The bulk of the "nal results consists of unsteady #uid-force data in two-phase
#ow for the present array. The application of these data in a stability analysis is presented in
the "nal paper of the series, Hirota et al. (2002).
Figure 1. Test array geometry.
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2. EXPERIMENTAL APPARATUS AND TEST PROCEDURE

The experimental test-loop and test-array have already been described in Part I of the series
(Nakamura et al. 2002). For the unsteady #uid-force tests the central part of the array was
modi"ed to incorporate strain-gauge instrumented &&rigid'' tubes for force measurement.
The centre tube in row 16 of the array (Figure 1) was the primary test-tube. In addition, two
neighbouring tubes identi"ed as R1 (downstream) and R2 (peripheral) were instrumented.
Although it would have been desirable to also instrument the tube upstream of S16 as well,
the additional cost proved prohibitive.

Figure 2 shows a close-up view of the central measurement region. Tubes R1 and R2 were
instrumented in both lift and drag directions. Tube S16 could be rotated to obtain forces in
either the lift or the drag direction. A schematic view of the structure of tubes R1 and R2 is
shown in Figure 3. The "rst two natural frequencies are 104)2 and 336)3 Hz. These
frequencies are well above the 2}20 Hz measurement range.

Figure 4 shows details of the primary measurement tube. The 161 mm titanium tube,
which makes part of the array, moves as a rigid body. It is supported on a larger tube which
is ribbed for additional sti!ness. The complete structure has a "rst-mode frequency of
97 Hz. It is supported by a bearing mounted in the test-section wall as shown in Figure 4(a).
Excitation was provided by a shaker.

The unbalance force on the bearing at 5)6 MPa test pressure was approximately 1000 kgf.
To provide a counter-balancing force, a pressurized cavity exterior to the test-section, at the
bearing location, was designed. To determine the balanced condition, a displacement sensor
was used to check the axial position of the test-tube against a known zero position
Figure 3. Structure of measurement tubes R1 and R2.

Figure 2. Central measurement area.



Figure 4. (a, b) Schematic and photo showing primary measurement tube; (c) external view of primary test-tube
showing alignment mechanism, pressure balance tubing and shaker.
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determined at atmospheric conditions. Nitrogen gas was used to provide the counter-
balancing pressure. Tubing for the balancing pressure may be seen in Figure 4(c).

Alignment of the test-tube within the array proved a challenging problem. This was
compounded by the limited linear range (0)5 mm) of the eddy-current displacement sensors.
An alignment system comprising support wires and micrometers for position checking was
designed [Figure 4(a)]. Tube location within the array was con"rmed by a pair of
displacement sensors, one each for the lift and the drag direction.

For a given pressure setting, the #ow velocity was set and allowed to attain a steady state
(up to 30 min was required for two-phase #ow). The test-tube was then excited at the
required amplitude and frequency.

Two measurements were made. First, a time-trace recording of tube S16 displacement
and the corresponding #uid forces. Next, a transfer function measurement was performed.
Spectral averaging was performed over a period of 4 min for each measurement, to
minimize the e!ect of noise on the measured transfer function. Data obtained included force
versus displacement transfer function, auto-spectra and coherence.

3. DATA REDUCTION PROCEDURE

3.1. TIME-AVERAGED ANALYSIS

The measured #uid force per unit length may be expressed as

F"Cu2 Am#

oD2
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maB#iu
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2
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#
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2
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sD x
0
e*ut, (1)

where x
0
e*ut is the displacement of tube S16. Here, C

ma
, C

da
and C

s
are the #uid added mass,

damping and sti!ness coe$cients, respectively, while m is the tube mass per unit length and
D the diameter; ; and o are the #ow velocity and #uid density, respectively.
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In homogeneous #ow, the #uid force is a stationary quantity. Consequently, the following
force/displacement transfer function is de"ned:

H
Fx
"

F

x
0
e*ut

. (2)

The real and imaginary parts of this transfer function take the form
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From equation (3) the #uid sti!ness force plus added mass component is

F
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, (4)

where the component F
tb
, related to the tube inertia, has been subtracted; F

tb
"mu2x

0
for

translational tube displacement. Since tube S16 executes a slight rocking motion, F
tb

was
determined by performing tests in air.

The damping force component is given by

F
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. (5)

Finally, the force coe$cient magnitude C
f

and phase /
f

are given by
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The data-reduction procedure outlined above is strictly valid only for the transfer
function between force and displacement for the moving tube, S16. However, with a slight
modi"cation, the analysis is equally valid for transfer functions associated with forces on the
"xed tubes, R1 and R2. The inertia terms need to be changed since F

tb
"0 in this case. Since

tubes R1 and R2 are "xed, the mass, m, in equation (1) can be eliminated. C
ma

, in this case
represents a coupling component induced by the motion of tube S16.

In the main results the velocity ; is the total super"cial gap velocity,

;"j
g
#j

l
. (8)

Using equation (5), the damping coe$cient becomes

c
f
"

!Im[H
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u
, (9)

while the corresponding damping factor is
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!Im[H
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]

2(m#m
a
)u2
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The damping f is the total #uid damping, including viscous, two-phase and #ow-dependent
damping as de"ned in Part I of the paper (Nakamura et al. 2002).
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For stability analysis, equations (6, 7) give the unsteady #uid forces necessary in the
models of Chen (1983) and Tanaka & Takahara (1980).

3.2. TIME}FREQUENCY ANALYSIS

In general, forces generated in two-phase intermittent #ow are nonstationary, resulting in
a time-dependent force}displacement relationship. It is desirable to extend the notion of
a classical transfer function to the nonstationary case by simply adding a dimension of time;
in other words, a time-dependent &&transfer function''. In the present study, this translates to
the introduction of a time dependence in the #uid-force coe$cients in equation (1).
Time}frequency signal analysis is a well-developed "eld with applications in areas such as
acoustics and speech analysis, as well as vibration monitoring and diagnosis. The reader is
referred to the comprehensive text by Boashash (1992) for reference.

The Wigner}Ville distribution is one of several possible time}frequency signal repres-
entations. The cross-Wigner}Ville spectrum between F and x is de"ned as follows (Claasen
& Mecklenbrauker 1980; Boashash & Escudie 1985):
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while the auto-Wigner}Ville transform for x is
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where the asterisk indicates complex conjugation. In equations (11) and (12), FK and xL are
complex analytic representations of the real quantities F and x. As an example

xL (t)"x(t)#ixJ (t), (13)

where xJ (t) is the Hilbert transform of x(t), given by
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P.<. indicates that the Cauchy principal value is to be taken in the integral of equation (14).
Instead of the analytic forms, the pure real-time signals F and x may also be used in
equations (11, 12). This gives the corresponding Wigner distributions. The Wigner distribu-
tions, however, su!er from aliasing (due to negative frequency components), and hence are
not desirable. The relation between the Wigner}Ville spectra and the conventional spectra
may be demonstrated by the following. Letting G

F
(u) and G

x
(u) be the Fourier transforms

of F and x, respectively, the integral
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shows that the spectrum of F can be recovered up to a constant GH
x
(0). Taking the Fourier

transform with respect to frequency instead, F(t) is recovered; thus,

P
=

~=

e~*ut=
Fx A

t

2
, uBdu"F (t)xH (0). (16)

=
Fx

is similar to a cross-spectrum, hence contains phase information;=
Fx

has the advant-
age of also containing time as a parameter.
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The function=
Fx

may be expressed as

=
Fx
"g (u, t)#im (u, t), (17)

leading to a phase angle de"nition

/
f
(u, t)"tan~1 A
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From equations (11) and (12) the following time-varying equivalent of the transfer
function of equation (2) is obtained:

H
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=

Fx
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=
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. (19)

Considering the real and imaginary parts of H
Fx

(u, t), force coe$cients can be extracted by
performing analysis identical to that outlined in equations (4}7). The important di!erence
between the resulting force coe$cients and the coe$cients given by equations (6, 7) is that
the force coe$cients derived from equation (19) are time-dependent.

In the unsteady #uid-force experiments, the phase angle /
f
(u

0
, t) at the tube excitation

frequency u
0

is of interest. The dependence of /
f

on time has important implications for
stability. A sign change in /

f
translates to a sign change in the e!ective #ow-dependent #uid

damping, as discussed later.

4. RESULTS

Data presented in what follows are for tests with cross-#ow displacement of tube S16. Due
to cost limitations the complete set of unsteady #uid-force coe$cients could not be
measured. As will be apparent, however, the intertube coupling forces are low or have low
coherence in two-phase #ow, at least for small amplitude displacements.

4.1. UNSTEADY FLUID FORCES AT HIGH PRESSURE

All tests in two-phase #ow were conducted for a void fraction of b"0)90. Figure 5 shows
typical time traces at P"3)0 MPa for the tube (S16), cross-#ow displacement and corre-
sponding #uid forces on the three measurement test-tubes; the #ow velocities are
j
g
"0)9 m/s, j

l
"0)10 m/s and excitation frequency 15 Hz. In all tests at P"5)6 MPa, tube

S16 was oscillated in cross-#ow with a peak amplitude x
0
"0)145 mm. For tube S16,

a large displacement-dependent force is generated. Note, however, that this includes
a component due to tube inertia. On the other hand, the force on the neighbouring tubes is
seen to be primarily due to turbulent bu!eting. The amplitude x

0
was limited by the extreme

load on the tube support O-ring seals due to the pressure discontinuity at the vessel wall.
Figure 6 shows an example of the lift-direction #uid force coe$cients as a function of
;/fD for tube S16. The data corresponds to;"1)0 m/s and 2)3 m/s at the highest pressure
P"5)6 MPa. The excitation frequencies are 20, 15, 10, 5 and 2 Hz. It is clear that unlike the
case of single-phase #ow (Tanaka & Takahara 1980; Chen 1983; Mureithi et al. 1996), the
force coe$cients are not simple single-valued functions of ;/fD. At constant ;/fD, the
force coe$cients show variation depending on the combination of ; and f. This indicates
that the homogeneous velocity may not be the true independent parameter. Alternatively,
it is suspected that a single, simple independent parameter may not exist. The above
phenomenon is most prominent at 0)5 MPa pressure, as seen in Figure 7 for tests at the
same velocities and frequencies as the data of Figure 6 with S16 excitation amplitude,



Figure 5. Typical time-trace data for 15 Hz excitation (P"3)0 MPa, j
g
"0)9 m/s, j

l
"0)10 m/s): (a, b) tube S16

cross-#ow displacement; (c, d) tube R1 drag and lift forces; (e, f ) tube R2 drag and lift forces.

Figure 6. Tube S16 lift force coe$cient dependence on ;/ fD at P"5)6 MPa for: s, ;"1)0 m/s; ,
;"2)3 m/s. (a) Phase, (b) magnitude.
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Figure 7. Tube S16 lift force coe$cient dependence on ;/ fD at P"0)5 MPa for: s, ;"1)0 m/s; ,
;"2)3 m/s. (a) Phase, (b) magnitude.
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x
0
"0)65 mm. The phase shows an apparent shift with;/fD as; increases. Note, however,

that the trend with ;/fD (at "xed ;) is maintained. C
f

on the other hand is not shifted as
; increases. However, in the range 4(;/fD(25, C

f
is multivalued. This becomes more

apparent later in Figure 10 for this pressure.
For the highest pressure, 5)6 MPa, the force coe$cient magnitude and phase are shown

in Figure 8. For each tube, the coherence between the #uid force and tube S16 displacement
is also shown. This is the complete set of force-coe$cient data taken for the three tubes: S16,
R1 and R2. Data taken at a constant #ow velocity ; (for varying frequency) are indicated
by the same symbol. Tube S16 (cross-#ow) amplitude is x

0
"0)145 mm.

For tube S16, the phase angle /
f
, Figure 8(a), is negative at low ;/fD. Recalling that

negative /
f

corresponds to positive damping [equations (7, 10)], for low;/fD the presence
of two-phase damping, f

tp
, is evident. This is in contrast to the single-phase #ow case where

only a small amount of viscous damping exists at low ;/fD, hence /
f
+0 but slightly

negative. The limiting value of /
f
, as ;/fD approaches zero, gives an estimate of the

#ow-independent two-phase damping, f
tp

, de"ned in Part I of the series (Nakamura et al.
2002).

Above ;/fD+5, the variation of /
f

(with ;/fD) is signi"cantly di!erent from the
single-phase #ow case. In the latter, /

f
becomes large and positive. This transition does not
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occur for the 5)6 MPa tests for the range of ;/fD tested. Instead, /
f

becomes increasingly
negative after a brief upward trend near ;/fD"10. In Figure 8(a, b) the result of
a polynomial "t on the data is shown as a solid line. In the range 5);/fD)50, it
appears that both C

f
and /

f
are better represented by double-valued functions. In

each case, two branches are indicated by broken lines. The /
f

and C
f

data for
;"1)00 m/s ( j

g
"0)9 m/s, j

l
"0)10 m/s) fall on the lower and upper branches, respectively,

in the corresponding graphs. Data for ;"2)33 m/s ( j
g
"2)1 m/s, j

l
"0)23 m/s), on

the other hand, fall on the opposite branches [Figure 8(a, b)]. Although results are less
clear for other test velocities, correspondence with the indicated branches is still remark-
able. The multivalued nature of the force coe$cients may not be entirely unexpected.
Single-phase data shows that C

f
and /

f
undergo a sharp discontinuity near ;/fD"10

for tube S16. This is associated with a change in the local #ow structure. The appearance
of two branches in Figure 8(a, b) might indicate that two-phase #ow behaves di!erently
from single-phase #ow in this transition region; essentially two possible stable #ow
con"gurations exist.

For the neighbouring tubes R1 and R2, no clear branching in C
f

and /
f

data is evident
[Figure 8(d}i)], although multiple values of C

f
and /

f
occur at a given;/fD. In the case of

/
f

[Figure 8(d, g)], the polynomial "t is a reasonable indicator of the data trend. C
f
, on the

other hand, may still be better approximated by a multiple-valued function as is most
distinctly evident in Figure 8(e).

The coherence between the measured #uid forces and tube (S16) displacement is also
presented in Figure 8. As expected, coherence is high for tube S16, Figure 8(c). Signi"cantly
lower values are obtained for the coupling forces on tubes R1 and R2. Low coherence is an
indicator of the presence of noise (turbulence excitation in this case) and/or nonlinear
e!ects. While low coherence due to noise has negative implications on measurement
accuracy, long-time averaging (4 min in the present tests) can counter the e!ect of reduced
coherence. Physically, low coherence implies that instability involving coupled tube motion
is less likely to be initiated than in the case where coherence is unity.

At 3)0 MPa pressure, a higher tube (S16) amplitude of 0)30 mm peak could be at-
tained in the tests. Figure 9 shows the resulting force coe$cients. Data for the central
tube (S16) are once again multivalued in the intermediate range of ;/fD. The transition
in /

f
is similar to that observed in single-phase #ow, albeit occurring at much higher

;/fD (here near ;/fD"30 versus ;/fD"10 in single-phase #ow). C
f

is slightly
lower at 3)0 MPa than at 5)6 MPa for tube S16. For the neighbouring tubes, C

f
values are

close for both pressures, while the scatter in /
f

data (for R1 and R2) makes comparison
di$cult. The overall trend of /

f
for tube R2 (!1803 at low;/fD and increasing monotoni-

cally with ;/fD) is similar to that obtained in single-phase #ow [see Tanaka & Takahara
(1980)].

Next, the results of tests at P"0)5 MPa are presented. In this case, the S16 test tube was
oscillated with a peak amplitude of 0)65 mm. C

f
and /

f
show no clear relationship with

;/fD, as seen in Figure 10.
The #ow structure approaches slug-type #ow at 0)5 MPa pressure [see Appendix A

in Nakamura et al. (2002)]. The #uid forces are therefore strongly time-dependent. In
this case, the existence of some time-averaged transfer function is questionable. One
can easily imagine that the instantaneous #uid force and phase change as ambient #ow
changes from gas to liquid. The resulting #uid forces are therefore nonstationary quantities.
In this case, the idea of a (constant) linear transfer function is invalid. It is therefore
necessary to incorporate temporal e!ects in the force}displacement relation. The e!ect of
#uid force nonstationarity is considered in the section on time}frequency analysis which
follows.
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Figure 10. Force coe$cient phase, magnitude and coherence for: (a}c) tube S16, lift; (d}f ) tube R1, lift;
P"0)5 MPa, x

0
"0)650 mm. Fluid velocities ( j

g
, j

l
) are: , (0)10, 0)9); e, (0)17, 1)5); s, (0)23, 2)1); n, (0)34, 3)1);

, (0)42, 3)8) and , (0)50, 4)5).
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4.2. TIME}FREQUENCY ANALYSIS

It was noted above that for nonhomogeneous #ows, the assumption of existence of an
average transfer function is invalidated by nonstationarity of the #uid forces. A rigorous
check was conducted by performing a Wigner}Ville transform analysis on data at 5)6
(homogeneous #ow) and 0)5 MPa (nonhomogeneous #ow). From auto- and cross-Wigner}
Ville transforms, a continuous representation of the transfer function in time can be derived.
The mathematical representation is given by equation (19).

Figure 11(a, b) shows tube S16 #uid-force time traces for tests at j
l
"0)10 m/s,

j
g
"0)9 m/s, and tube excitation frequency f"20 Hz for P"5)6 MPa and 10 Hz for

0)5 MPa, respectively. The frequency spectrum for P"0)5 MPa was found to be strongly
time-dependent indicating nonstationarity of the #uid force. Figure 11(c, d) shows the
force}displacement phase di!erence /

f
(u, t) derived from =

Fx
(u, t), equation (18), for

P"5)6 and 0)5 MPa. While the phase is constant (as expected) for 5)6 MPa, large vari-
ations occur for 0)5 MPa. Physically, this means that the instantaneous damping force
varies between positive and negative values over time for P"0)5 MPa. Since the phase may
stay, say, positive over several oscillation cycles, instability can occur. This instability is,
however, reversed several cycles later. This may explain the phenomenon of intermittent
instability common in two-phase #ow [see, e.g., Nakamura et al. (1995)].

From the foregoing it is clear that the time-averaged force coe$cients presented in
Figure 10 (for P"0)5 MPa) may not yield the correct instability boundary. A stability
analysis taking temporal e!ects into account is needed. Such an analysis has been proposed
by Nakamura et al. (1995).



Figure 11. (a, b) Tube S16 lift direction #uid-force time traces for ;"1)00 m/s; (c, d) variation with time of
force/displacement phase di!erence from Wigner}Ville transform. Test conditions are: (a, c) P"5)6 MPa,

f"20 Hz and (b, d) P"0)5 MPa, f"10 Hz.

TABLE 1

Two-phase damping for tube S16, in the cross-#ow direction, determined by measurement
compared with values calculated from unsteady #uid force; (b"0)90)

f
tp

(%)

P (MPa) ;/fD Direct damping test Fluid-force test

3)0 2)2 1)7 1)9
5)8, 5)6 2)3 1)1 0)9
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4.3. ESTIMATION OF TWO-PHASE FLOW DAMPING

We now brie#y return to the question of two-phase #ow damping, discussed at length in
Part I of this study (Nakamura et al. 2002).

Two-phase damping (f
tp
) was de"ned as the damping value in the limit of zero #ow

velocity (excluding viscous damping, f
v
). The #uid damping force at low ;/fD consists of

components f
tp

and f
v
. By theoretically estimating f

v
, it becomes possible to determine

two-phase damping, f
tp

, from the measured unsteady #uid forces. Also, f
v
may be theore-

tically estimated by (Chen et al. 1976; Rogers et al. 1984)

f
v
"

n

J8 A
oD2

m#m
a
B A

2l
nfD2B

1@2

C
1#(D/D

e
)3

(1!(D/D
e
)2)2D , (20)

where o and l are homogeneous density and viscosity, respectively. From equations (9, 10)
then we have

f
tp
"

c
f

2(m
a
#m)u

!f
v
, (21)

with the viscous damping as given by equation (20).
Table 1 shows the comparison between f

tp
as measured directly (Nakamura et al. 2002)

and as given by equation (21), for tube S16 and b"0)90. Agreement is quite reasonable.
Figure 12 shows the variation of f with;/fD for P"5)6 (and 5)8) MPa. The value shown in
Table 1 (for 5)6 MPa) corresponds to the data at the lowest ;/fD in Figure 12. It is clear



Figure 12. Comparison of #uid damping from (a) , unsteady #uid forces tests, P"5)6 MPa, (b) e,
direct damping measurement, P"5)8 MPa. Data are for tube S16 (cross-#ow direction), and void fraction

b"0)90.
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that f
tp

is hardly small and, as a result, modi"es the measured #uid forces considerably.
Since f

tp
is considered to be independent of ;/fD, it is reasonable to subtract the corre-

sponding damping force, 2(m#m
a
) f

tp
ux

0
, together with a similar component due to

viscous damping, f
v
, from the total damping force [F

da
in equation (5)]. The result is new

values CM
f
and /M

f
[see equations (6, 7)] which are independent of f

tp
and f

v
; /M

f
is identical to

/
f

except for a shift: /
f
"/M

f
!/

0
, where /

0
is the phase di!erence induced by f

tp
#f

v
.

5. SUMMARY AND CONCLUSIONS

Unsteady #uid forces at high temperature and pressure (prototypical conditions) in
steam}water #ow have been measured. Signi"cant di!erences from the case of single-phase
#ow were found. At high pressure (P53)0 MPa), the cross-#ow direction #uid-force
coe$cients associated with a tube's own motion is double valued in the intermediate;/fD
range, 5[;/fD[50. Intertube coupling forces are also multivalued at a given ;/fD,
although clear branching is not self-evident. Two-phase damping, f

tp
, adds a signi"cant

component to the measured damping force. This component (together with the viscous
damping force) should be subtracted from the total measured force in order to obtain the
true #ow-dependent unsteady #uid force.

In nonhomogeneous #ow (0)5 MPa), the assumption of the existence of a transfer
function between #uid force and tube displacement was shown to break down. A time}
frequency analysis con"rmed that the instantaneous transfer function is strongly time-
dependent. This could lead to intermittent instabilities.

Unlike the case of single-phase #ow, the unsteady #uid forces in two-phase #ow are
complex functions of reduced velocity, void fraction and other parameters. This necessarily
complicates the application of these forces in a stability analysis. The low coherence
associated with intertube coupling forces is another signi"cant result. This essentially
reduces the probability of initiation of a coupled-mode instability.
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